Derivatives of Trigonometric Functions

-Graph the function $y=\sin (x)$

-The graphing calculator has a function called nDeriv that will graph the numerical derivative of a function at every value of x.
-Using this, plot the numerical derivative of $\sin (x)$.

-What does this look like? ' $\cos (x)$
-To verify this we need to go back to the angle sum identity

$$
\sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B)
$$

-Now confirm

$$
\begin{aligned}
& \frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x) \cos (h)+\cos (x) \sin (h)-\sin (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(\sin (x))(\cos (h)-1)+\cos (x) \sin (h)}{h} \\
& =\lim _{h \rightarrow 0} \sin (x) \cdot \lim _{h \rightarrow 0} \frac{(\cos (h)-1)}{h}+\lim _{h \rightarrow 0} \cos (x) \cdot \lim _{h \rightarrow 0} \frac{\sin (h)}{h} \\
& =\sin (x) \cdot 0+\cos (x) \cdot 1 \\
& =\cos (x)
\end{aligned}
$$

-In short, the derivative of sine is cosine.

$$
\frac{d}{d x} \sin (x)=\cos (x)
$$

Derivative of the Cosine Function

$$
\frac{d}{d x} \cos (x)=-\sin (x)
$$

Example

Find the derivative of $y=x^{2} \sin (x)$

$$
\begin{aligned}
& \frac{d y}{d x}=x^{2} \cdot \frac{d}{d x}(\sin (x))+\sin (x) \cdot \frac{d}{d x}\left(x^{2}\right) \\
& =x^{2} \cos (x)+2 x \sin (x)
\end{aligned}
$$

Example

Find $\frac{d y}{d x}$ if $y=\tan (x)$

$$
\begin{aligned}
& y=\tan (x)=\frac{\sin (x)}{\cos (x)} \\
& =\frac{(\cos x)(\cos x)-(\sin x)(-\sin x)}{\cos ^{2} x} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} \\
& =\frac{1}{\cos ^{2} x} \\
& =\sec ^{2} x
\end{aligned}
$$

Derivatives of Trig Functions

$$
\begin{array}{ll}
\frac{d}{d x} \tan x=\sec ^{2} x & \frac{d}{d x} \sec x=\sec x \tan x \\
\frac{d}{d x} \cot x=-\csc ^{2} x & \frac{d}{d x} \csc x=-\csc x \cot x
\end{array}
$$

Finding Tangent and Normal Lines

Find the equation tangent and normal to $y=\frac{\tan x}{x}$ at the point $x=2$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{x\left(\sec ^{2} x\right)-(\tan x)(1)}{x^{2}} \\
& f^{\prime}(2)=\frac{2\left(\sec ^{2} 2\right)-(\tan 2)(1)}{2^{2}}=3.43
\end{aligned}
$$

-Tangent

$$
\begin{aligned}
& y-(-1.0925)=3.43(x-2) \\
& y+1.0925=3.43 x-6.86 \\
& y=3.43 x-7.9525
\end{aligned}
$$

-Normal

$$
\begin{aligned}
& y-(-1.0925)=-0.2915(x-2) \\
& y=-0.2915 x-0.5095
\end{aligned}
$$

Example

Find the derivative of $u=\frac{\cos x}{1-\sin x}$

$$
\begin{aligned}
& \frac{d u}{d x}=\frac{(1-\sin x) \cdot \frac{d}{d x}(\cos x)-\cos x \cdot \frac{d}{d x}(1-\sin x)}{(1-\sin x)^{2}} \\
& =\frac{(1-\sin x)(-\sin x)-\cos x(0-\cos x)}{(1-\sin x)^{2}} \\
& =\frac{-\sin x+\sin ^{2} x+\cos ^{2} x}{\left(1-\sin ^{2} x\right)^{2}} \\
& =\frac{-\sin x}{(1-\sin x)^{2}}=\frac{1}{1-\sin x}
\end{aligned}
$$

Simple Harmonic Motion

-A weight on a spring is stretched 5 units beyond rest $(s=0)$ and released at $t=0$.
-Its position is given by $s=5 \cos t$
-What is the velocity and acceleration at time t?

Position: $s=5 \cos t$

Velocity: $v=\frac{d s}{d t}=\frac{d}{d x}(5 \cos t)=-5 \sin t$

Acceleration: $a=\frac{d v}{d t}=\frac{d}{d x}(-5 \sin t)=-5 \cos t$

Information

1) As time passes the weight moves down and up between $s=-5$ and $s=5$ on the s-axis.
-The amplitude of the motion is 5 .
-The period of the motion is 2π.
2) The velocity $v=-5 \sin t$ attains the greatest magnitude 5 , when $\cos t=0$. Hence speed $|v|=5|\sin t|$, is greatest when $\cos t=0$ that is when $s=0$.
-The speed is zero when $\sin t=0$.
-This occurs when $s=5 \cos t= \pm 5$
3) The acceleration is always the exact opposite of the position value.
4) Acceleration $a=-5 \cos t$ is zero only at the rest position.
-Gravity forces equal to the force of the spring.

Jerk

-A sudden acceleration is called a "jerk"
-A jerk spills a drink in a car.
-The derivative responsible for jerk is the $3^{\text {rd }}$ derivative of position.
-Jerk is the derivative of acceleration.

$$
j(t)=\frac{d a}{d t}=\frac{d^{3} s}{d t^{3}}
$$

-A jerk is thought to cause motion sickness.

A Couple of Jerks

-The jerk caused by the constant acceleration of gravity $g=-32 \mathrm{ft} / \mathrm{sec}^{2}$ is 0 .

$$
j=\frac{d}{d t}(g)=0
$$

-This is why you don't get sick at 1 g .
-The jerk of the motion of the spring mass is

$$
\begin{aligned}
& j=\frac{d a}{d t}=\frac{d}{d t}(-5 \cos t) \\
& =5 \sin t
\end{aligned}
$$

$-G$ reatest magnitude is when $\sin t= \pm 1$
-This occurs at the rest position.
-When the acceleration changes direction and sign.

